A brief report on protoDUNE online computing

Maxim Potekhin (BNL)

DUNE-LI Meeting

07/13/2016

Overview

- The "protoDUNE Science Workshop" held at CERN on June 28th—30th was very useful (https://indico.fnal.gov/conferenceDisplay.py?confld=12042).
 - ...see next slides for details. Major impact on both online and offline.
- Current (but slightly out-of-date due to ongoing development) set of protoDUNE data parameters is kept as a spreadsheet in DUNE DocDB 1086, which is being updated based on the workshop results and some other follow-up.
- The "neut" cluster at CERN is now online and can be used if needed (initial configuration of 55 nodes with 300 more coming soon), access is rather straighforward.
- Renewed communications with the DAQ group about the DAQ interface to the online buffer.
- Experimented with a simple xrootd cluster setup (built from scratch) to understand what difficulties the DAQ group might face in implementing the interface.
- Discussions with the FNAL data experts to follow up on the data handling design such as documented in DocDB 1212.
- Received a request from the RACF leader Eric Lancon to provide estimates of the computing needs of protoDUNE@BNL for the next 5-10 years.

The "protoDUNE Science" Workshop

- Lots of good talks on physics including LARiAT
- a number of recent decisions announced (Andre/Thomas) such as:
 - the laser calibration system is no longer planned for protoDUNE due to cost and implementation risk considerations
 - no scintillator paddles for cosmic ray muons on top of the detector (cost and complexity)
 - muon trigger for particles close to the direction of the beam
 - scintillating fibers for tracking the beam particles (no MWPC)
 - total nominal number of triggers during the run upgraded to 25M to account for trigger inefficiency and other factors which of course are all still TBD
 - nominal trigger rate set as 25Hz in order to accommodate the higher statistics (rates as high as 50Hz are also discussed)
 - all 6 APAs are to be read out (different to a 3-APA readout proposed in Spring 2016)
- A coherent (but complex) calibration strategy was presented to reflect the new configuration sans laser. Implementation will require a major software effort.
- All of this not yet reflected in the TDR (ETA late summer) lots of updates will be needed.

Summary of impact on computing

- These updated protoDUNE parameters give a new basis for estimating the
 data characteristics and change the scale of the latter. This has a major effect
 on the scale and design of the online buffer and online/offline interface.and
 makes it more challenging. Similarly, the offline requirements are much higher
 (by an order of magnitude) a comprehensive strategy is yet to be
 developed.
- Calibrations will require a well coordinated effort and manpower which as of yet has to materialize.

protoDUNE "Calibration Strategy with tracks"

- Please see the presentation by I.Kreslo at the workshop for details
- The screenshot below is meant to convey the complexity of the proposal

Impact of the "new configuration" on the online buffer

- Please see slides presented by Brett at a recent DAQ meeting: https://indico.fnal.gov/conferenceDisplay.py?confld=11233
- ...also spreadsheet in DocDB 1086. "Goldilocks scenario" officially dead.
- nominal lossless compression factor is assumed to be 4.
- trigger rates of 25—50Hz translate into instantaneous data rate of 1.5—3GB/s
 - can double when the final decision is made on the cosmic triggers
 - effective throughput of SATA III is 600MB/s
 - writing to multiple HDDs is unavoidable
 - throughput of NIC and switches is an additional consideration, cf. commodity switches and NICs are 1Gbps resulting in O(10) nodes necessary to have the required throughput
 - we are looking at up to 50 nodes to absorb the data

Design options for the online buffer

- two design approaches are currently being explored (Maxim & Brett):
 - "unified online/offline buffer" with HDDs attached to event builders and serving as input dropboxes for the FTS (file transfer system)
 - dedicated buffer networked to DAQ, with xrootd as primary candidate for clustering and load balancing: creates an additional layer in the data flow graph
- each has pros & cons:
 - unified: less hardware, more straightforward interface with online storage, but tight coupling between components with respect to design and planning/procurement cycle, less spare CPU
 - dedicated: more hardware and DAQ must have a more involved (but not too complicated) interface to storage; on the other hand decoupled design simplifies development (which can be done in parallel with FTS now), configuration and testing. Storage is decoupled from DAQ and is accessed essentially via a URI. Due to more nodes, there is more spare CPU available to do some sort of prompt processing and/or monitoring
 - IMHO enables us to do development in parallel and start earlier

Unified vs Dedicated online buffer

The online buffer action items

- A discrete event simulation of the DAQ/buffer/offline interface is in the works (Brett) which will allow us to understand bottlenecks, performance and scalability of various configurations under different assumptions.
- Working to understand the notification mechanism for the easiest integration of xrootd and FTS.
- Additional onus on DAQ to use xrootd is currently seen as minimal (only needing the client).
- Hardware options are being considered including repurposing a part of the "neut" cluster at CERN for xrootd, while upgrading the nodes with newer HDD, rough cost estimate \$10k (just disk).
 - initial feedback from CERN (Nectarios) is favorable
 - for functional and some scalability testing the hardware can remain at its present location in the Idea Square building and/or in Bldg. 185
 - the plan is to continue development of xrootd configuration in a way that's best for interfacing both DAQ and FTS

Prompt processing

- We will likely want to closely monitor the noise characteristics and its evolution in time
 - noise spectra to be calculated continuously on a fraction of data (at CERN)
- Working event display is a must
- Right now unclear how much reco needs to be done in prompt processing mode
 - naively must do some, as one needs to monitor purity
 - coupling to space charge?

The "neut" cluster (recycled ATLAS TDAQ)

Impact of the "new configuration" on the protoDUNE offline

- Raw data (nominal as per DocDB 1086) is 1.5PB with beam triggers only
 - Compare with earlier estimate of 0.34PB in the "Goldilocks" scenario
 - considered by a few people in protoDUNE as the low limit of what will be taken
 - indications from FNAL that they will be ready to host a few PB worth of data (unclear how this will be supported)
- Calibrations group is still working on estimating the number of cosmic muon triggers that will be required, the best current estimate is about the same as the beam triggers
 - this doubles the amount and rate of data!

protoDUNE offline: resources

- AFAIK the protoDUNE request for FNAL resources was 8M CPU×hr/yr (TBD?)
 - a few reconstruction algorithms are under development now not clear which one will end up in production and all are <u>far from compelling optimization</u>
 - ...so quite hard to estimate the necessary CPU requirement for time processing of the protoDUNE data - although the above request at least appears to be compatible with the "Goldilocks" scenario under some assumptions
- The "new normal" is up to an order of magnitude higher. What to do?
 - heard credible reports that OSG resources are already saturated
 - resources formerly available thorugh DOE allocations (like at PDSF) are likewise scarce or unavailable now
 - need to understand the limits (conservatively!) of what FNAL can provide
 - processing solely within the FNAL perimeter is unlikely now
- Resource federation and workload management may become an important requirement in order to leverage all that's available to DUNE
 - does not seem optional anymore due to a different scale
 - cf. promising contacts with BNL RACF and possible allocation here

Workload Management Systems (WMS)

- Recent initiative from FNAL SCD to evaluate WMS for protoDUNE
- A workshop is planned at FNAL on July 28th-29th to discuss this one more time and to meet with Panda experts in the same time frame.
- Nectarios (who built the "neut" cluster at CERN) is enthusiastic about unifying Grid resources for protoDUNE under a single management system.
 - there is feedback from the Czech group that there may be spare capacity that could be used by protoDUNE - proper WMS will make it a lot easier to "onboard" many users and production managers.
 - Ixbatch and neut at CERN could be made available to users through the same interface and monitoring, along with BNL and perhaps the Czech cluster (also UK?)
- Investigating Panda
 - COMPASS at CERN have experience in running Panda on Ixbatch (the public batch system).
 - Creating DUNE Panda queues at BNL should not be a problem due to considerable local expertise.
 - Consider this not the final technology choice but an evaluation exercise.

Offline Software

- Regardless of the reconstruction algorithms, operation principle of LArTPC dictates that signal deconvolution must be the first step in the reconstruction chain
 - has an effect on how and where this production step is done, preferably close to the data
 - after this step the volume of data will be greatly reduced since after deconvolution (including filtering) a threshold will be applied
- There is a to-do list covering software needed for the measurements program compiled by Robert and Dorota (see the workshop web page)
 - lots of work and effort... Volunteers needed
- Calibrations must be ready before the start of run and due to complexity appear to be a major challenge

BNL Computing: RACF

- We met with the new RACF director Eric Lancon and there is a spirit of cooperation
- RACF is willing to help with data handling expertise and computing support
- We are asked to formulate our requirements for the next 5 to 10 years, in terms of resources we need at BNL:
 - opinions?

